Convergence acceleration of the LMS algorithm using successive data orthogonalization
نویسندگان
چکیده
We propose a new adaptive filtering algorithm whose convergence rate is very fast even for a highly correlated input signal. It is well-known that convergence rate gets worse when the input signal to an adaptive filter is correlated. Introducing an orthogonal constraint between successive input signal vectors makes us overcome the slow convergence caused by the correlated input signal. It is shown that the proposed algorithm yields highly improved convergence speed and tracking capability for both time invariant and time varying environments, while being very simple both in computation and implementation.
منابع مشابه
Optimization Capabilities of LMS and SMI Algorithm for Smart Antenna Systems (RESEARCH NOTE)
In the present paper convergence characteristics of Sample matrix Inversion (SMI) and Least Mean Square (LMS) adaptive beam-forming algorithms (ABFA) are compared for a Smart Antenna System (SAS) in a multipath environment. SAS are employed at base stations for radiating narrow beams at the desired mobile users. The ABFA are incorporated in the digital signal processors for adjusting the weight...
متن کاملThe Wavelet Transform-Domain LMS Adaptive Filter Algorithm with Variable Step-Size
The wavelet transform-domain least-mean square (WTDLMS) algorithm uses the self-orthogonalizing technique to improve the convergence performance of LMS. In WTDLMS algorithm, the trade-off between the steady-state error and the convergence rate is obtained by the fixed step-size. In this paper, the WTDLMS adaptive algorithm with variable step-size (VSS) is established. The step-size in each subf...
متن کاملAn Analytical Model for Predicting the Convergence Behavior of the Least Mean Mixed-Norm (LMMN) Algorithm
The Least Mean Mixed-Norm (LMMN) algorithm is a stochastic gradient-based algorithm whose objective is to minimum a combination of the cost functions of the Least Mean Square (LMS) and Least Mean Fourth (LMF) algorithms. This algorithm has inherited many properties and advantages of the LMS and LMF algorithms and mitigated their weaknesses in some ways. The main issue of the LMMN algorithm is t...
متن کاملModified frame algorithm and its convergence acceleration by Chebyshev method
The aim of this paper is to improve the convergence rate of frame algorithm based on Richardson iteration and Chebyshev methods. Based on Richardson iteration method, we first square the existing convergence rate of frame algorithm which in turn the number of iterations would be bisected and increased speed of convergence is achieved. Afterward, by using Chebyshev polynomials, we improve this s...
متن کاملAn Optimized Online Secondary Path Modeling Method for Single-Channel Feedback ANC Systems
This paper proposes a new method for online secondary path modeling in feedback active noise control (ANC) systems. In practical cases, the secondary path is usually time-varying. For these cases, online modeling of secondary path is required to ensure convergence of the system. In literature the secondary path estimation is usually performed offline, prior to online modeling, where in the prop...
متن کامل